2024

Fangzhou Xia*; Ivo W Rangelow; Kamal Youcef-Toumi
Active Probe Atomic Force Microscopy: A Practical Guide on Precision Instrumentation Book
Springer, 2024, ISBN: 978-3-031-44232-2.
Abstract | Links | BibTeX | Tags: Actuator, Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Mechatronics, MEMS, Modeling & Simulation, Motion Control, Nanorobotics, Piezoelectricity, Review, Sensor, Signal Processing, Theory
@book{2023AFMbook,
title = {Active Probe Atomic Force Microscopy: A Practical Guide on Precision Instrumentation},
author = {Fangzhou Xia* and Ivo W Rangelow and Kamal Youcef-Toumi},
url = {https://link.springer.com/book/10.1007/978-3-031-44233-9},
doi = {https://doi.org/10.1007/978-3-031-44233-9},
isbn = {978-3-031-44232-2},
year = {2024},
date = {2024-02-06},
urldate = {2023-10-01},
publisher = {Springer},
abstract = {From a perspective of precision instrumentation, this book provides a guided tour to readers on exploring the inner workings of atomic force microscopy (AFM). Centered around AFM, a broad range of mechatronic system topics are covered including mechanics, sensors, actuators, transmission design, system identification, signal processing, dynamic system modeling, controller. With a solid theoretical foundation, practical examples are provided for AFM subsystem level design on nano-positioning system, cantilever probe, control system and system integration. This book emphasizes novel development of active cantilever probes with embedded transducers, which enables new AFM capabilities for advanced applications. Full design details of a low-cost educational AFM and a Scale Model Interactive Learning Extended Reality (SMILER) toolkit are provided, which helps instructors to make use of this book for curriculum development. This book aims to empower AFM users with deeper understanding of the instrument to extend AFM functionalities for advanced state-of-the-art research studies. Going beyond AFM, materials presented in this book are widely applicable to precision mechatronic system design covered in many upper-level graduate courses in mechanical and electrical engineering to cultivate next generation instrumentalists.},
keywords = {Actuator, Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Mechatronics, MEMS, Modeling & Simulation, Motion Control, Nanorobotics, Piezoelectricity, Review, Sensor, Signal Processing, Theory},
pubstate = {published},
tppubtype = {book}
}
2023
Fangzhou Xia*; Kamal Youcef-Toumi; Thomas Sattel; Eberhard Manske; Ivo W. Rangelow
Active Probe Atomic Force Microscopy with Quattro-Parallel Cantilever Arrays for High-Throughput Large-Scale Sample Inspection Journal Article
In: Journal of Visualized Experiments, pp. e65210, 2023, ISSN: 1940-087X.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Automation, Experimentation, Instrumentation, Material Science, Mechatronics, MEMS, Method, Sensor
@article{2023JoVE,
title = {Active Probe Atomic Force Microscopy with Quattro-Parallel Cantilever Arrays for High-Throughput Large-Scale Sample Inspection},
author = {Fangzhou Xia* and Kamal Youcef-Toumi and Thomas Sattel and Eberhard Manske and Ivo W. Rangelow},
url = {https://www.jove.com/t/65210},
doi = {10.3791/65210},
issn = {1940-087X},
year = {2023},
date = {2023-06-16},
urldate = {2023-06-16},
journal = {Journal of Visualized Experiments},
pages = {e65210},
abstract = {An Atomic Force Microscope (AFM) is a powerful and versatile tool for nanoscale surface studies to capture 3D topography images of samples. However, due to their limited imaging throughput, AFMs have not been widely adopted for large-scale inspection purposes. Researchers have developed high-speed AFM systems to record dynamic process videos in chemical and biological reactions at tens of frames per second, at the cost of a small imaging area of up to several square micrometers. In contrast, inspecting large-scale nanofabricated structures, such as semiconductor wafers, requires nanoscale spatial resolution imaging of a static sample over hundreds of square centimeters with high productivity. Conventional AFMs use a single passive cantilever probe with an optical beam deflection system, which can only collect one pixel at a time during AFM imaging, resulting in low imaging throughput. This work utilizes an array of active cantilevers with embedded piezoresistive sensors and thermomechanical actuators, which allows simultaneous multi-cantilever operation in parallel operation for increased imaging throughput. When combined with large-range nano-positioners and proper control algorithms, each cantilever can be individually controlled to capture multiple AFM images. With data-driven post-processing algorithms, the images can be stitched together, and defect detection can be performed by comparing them to the desired geometry. This paper introduces principles of the custom AFM using the active cantilever arrays, followed by a discussion on practical experiment considerations for inspection applications. Selected example images of silicon calibration grating, highly-oriented pyrolytic graphite, and extreme ultraviolet lithography masks are captured using an array of four active cantilevers ("Quattro") with a 125 {textmu}m tip separation distance. With more engineering integration, this high-throughput, large-scale imaging tool can provide 3D metrological data for extreme ultraviolet (EUV) masks, chemical mechanical planarization (CMP) inspection, failure analysis, displays, thin-film step measurements, roughness measurement dies, and laser-engraved dry gas seal grooves.},
keywords = {Atomic Force Microscopy, Automation, Experimentation, Instrumentation, Material Science, Mechatronics, MEMS, Method, Sensor},
pubstate = {published},
tppubtype = {article}
}
Fangzhou Xia*; Shane Lovet; Eyan Forsythe; Malek Ibrahim; Kamal Youcef-Toumi
AFM SMILER: A Scale Model Interactive Learning Extended Reality Toolkit for Atomic Force Microscopy based on Digital Twin Technology Journal Article
In: IEEE Transactions on Mechatronics (in preparation), 2023.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Intelligence, Mechatronics, MEMS, Modeling & Simulation, Nanorobotics, Sensor, Theory
@article{2023IEEETM,
title = {AFM SMILER: A Scale Model Interactive Learning Extended Reality Toolkit for Atomic Force Microscopy based on Digital Twin Technology},
author = {Fangzhou Xia* and Shane Lovet and Eyan Forsythe and Malek Ibrahim and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/abstract/document/10136835},
doi = {10.1109/TMECH.2023.3274695},
year = {2023},
date = {2023-06-01},
urldate = {2023-01-01},
journal = {IEEE Transactions on Mechatronics (in preparation)},
abstract = {Atomic force microscope (AFM) is a precision mechatronic system for nanoscale imaging of surfaces. Due to limited instrument access and lack of visualization techniques, understanding its principles can be challenging. Digital twin technology allows the creation of virtual representations of physical systems, which can be particularly useful to address challenges in AFM education. To realistically simulate nanoscale physics, we first developed new efficient algorithms for four virtual scale models, including cantilever mechanics, probe transducers, controller tuning, and contact mechanics. Second, three simulated experiment interactive learning modules are developed for instrument operation, including virtual imaging, system overview, and imaging modalities. In the end, three hardware systems are integrated for an extended reality experience, including a macroscopic AFM scale model, a haptic device for probe-sample interaction force feedback and an upgraded low-cost educational AFM for nanoscale imaging and instrumentation. This completes the eight total modules for the AFM SMILER: A Scale Model Interactive Learning Extended Reality toolkit. Preliminary studies shows the toolkit being helpful for AFM education. In addition to mechatronics and nanotechnology education, techniques developed in this work can be generally applied to computationally efficient realistic digital twin creation.},
keywords = {Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Intelligence, Mechatronics, MEMS, Modeling & Simulation, Nanorobotics, Sensor, Theory},
pubstate = {published},
tppubtype = {article}
}
2022
Fangzhou Xia*; Kamal Youcef-Toumi
Review: Advanced Atomic Force Microscopy for Biomedical Research Journal Article
In: Biosensors, vol. 12, no. 12, pp. 1116, 2022.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Instrumentation, Medication, MEMS, Nanorobotics, Review
@article{2022MDPIBiosensors,
title = {Review: Advanced Atomic Force Microscopy for Biomedical Research},
author = {Fangzhou Xia* and Kamal Youcef-Toumi},
url = {https://www.mdpi.com/2079-6374/12/12/1116},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {Biosensors},
volume = {12},
number = {12},
pages = {1116},
publisher = {MDPI},
abstract = {Visualization of biomedical samples in their native environments at the microscopic scale is crucial for studying fundamental principles and discovering biomedical systems with complex interaction. The study of dynamic biological processes requires a microscope system with multiple modalities, high spatial/temporal resolution, large imaging ranges, versatile imaging environments and ideally in-situ manipulation capabilities. Recent development of new Atomic Force Microscopy (AFM) capabilities has made it such a powerful tool for biological and biomedical research. This review introduces novel AFM functionalities including high-speed imaging for dynamic process visualization, mechanobiology with force spectroscopy, molecular species characterization, and AFM nano-manipulation. These capabilities enable many new possibilities for novel scientific research and allow scientists to observe and explore processes at the nanoscale like never before. Selected application examples from recent studies are provided to demonstrate the effectiveness of these AFM techniques.},
keywords = {Atomic Force Microscopy, Instrumentation, Medication, MEMS, Nanorobotics, Review},
pubstate = {published},
tppubtype = {article}
}
Fangzhou Xia*; Morgan P Mayborne; Qiong Ma; Kamal Youcef-Toumi
Physical Intelligence in the Metaverse: Mixed Reality Scale Models for Twistronics and Atomic Force Microscopy Proceedings Article
In: 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1722-1729, 2022.
Abstract | Links | BibTeX | Tags: Actuator, Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Intelligence, Material Science, Mechatronics, MEMS, Modeling & Simulation, Nanorobotics, Sensor
@inproceedings{2022IEEEAIM,
title = {Physical Intelligence in the Metaverse: Mixed Reality Scale Models for Twistronics and Atomic Force Microscopy},
author = {Fangzhou Xia* and Morgan P Mayborne and Qiong Ma and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/9863383},
doi = {10.1109/AIM52237.2022.9863383},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)},
pages = {1722-1729},
abstract = {Physical intelligence (PI) is an emerging research field using new multi-functional smart materials in mechatronic designs. On the microscopic scale, PI principles give rise to unconventional transducers, which are especially useful for micro/nano-robot design with size and resource constrains. Since it is not easy to directly observe nanoscale multi-physics phenomenon, understanding their principles can be challenging. In this work, we bring PI principles into the metaverse to bridge this gap by developing two mixed reality scale models. The first example is a virtual reality (VR) 2D material twistronics visualizer to demonstrate the novel intelligent 2D materials with tunable properties as a rising field in condensed matter physics. Users can interactively control the cross-coupling multi-physics phenomena and observe the visualized material responses. The second example is centered around an Atomic Force Microscope (AFM) to illustrate its imaging and probe principles. For interaction, users can control the twist angle using atomic lattice models and feel the AFM cantilever force using custom haptic devices. We believe these tools can help precision mechatronic engineers understand and make better use of physical intelligence building blocks to design micro-electromechanical systems.},
keywords = {Actuator, Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Intelligence, Material Science, Mechatronics, MEMS, Modeling & Simulation, Nanorobotics, Sensor},
pubstate = {published},
tppubtype = {inproceedings}
}
2021
Fangzhou Xia*; James Edwin Quigley; Xiaotong Zhang; Chen Yang; Yi Wang; Kamal Youcef-Toumi
A Modular Low-cost Atomic Force Microscope for Precision Mechatronics Education Journal Article
In: Mechatronics, vol. 76, pp. 102550, 2021, ISSN: 0957-4158.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Mechatronics, Nanorobotics, Signal Processing
@article{2021Mechatronics,
title = {A Modular Low-cost Atomic Force Microscope for Precision Mechatronics Education},
author = {Fangzhou Xia* and James Edwin Quigley and Xiaotong Zhang and Chen Yang and Yi Wang and Kamal Youcef-Toumi},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0957415821000441},
issn = {0957-4158},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Mechatronics},
volume = {76},
pages = {102550},
publisher = {Elsevier},
abstract = {Precision mechatronics and nanotechnology communities can both benefit from a course centered around an Atomic Force Microscope (AFM). Developing an AFM can provide precision mechatronics engineers with a valuable multidisciplinary hands-on training experience. In return, such expertise can be applied to the design and implementation of new precision instruments, which helps nanotechnology researchers make new scientific discoveries. However, existing AFMs are not suitable for mechatronics education due to their different original design intentions. Therefore, we address this challenge by developing an AFM intended for precision mechatronics education.
This paper presents the design and implementation of an educational AFM and its corresponding precision mechatronics class. The modular educational AFM is low-cost (<4,000$) and easy to operate. The cost reduction is enabled by new subsystem development of a buzzer-actuated scanner and demodulation electronics designed to interface with a myRIO data acquisition system. Moreover, the use of an active cantilever probe with piezoresistive sensing and thermomechanical actuation significantly reduced experiment setup overhead with improved operational safety. In the end, the developed AFM capabilities are demonstrated with imaging results. The paper also showcases the course design centered around selected subsystems. The new AFM design allows scientific-method-based learning, maximizes utilization of existing resources, and offers potential subsystem upgrades for high-end research applications. The presented instrument and course can help connect members of both the AFM and the mechatronics communities to further develop advanced techniques for new applications.},
keywords = {Atomic Force Microscopy, Design, Education, Experimentation, Instrumentation, Mechatronics, Nanorobotics, Signal Processing},
pubstate = {published},
tppubtype = {article}
}
This paper presents the design and implementation of an educational AFM and its corresponding precision mechatronics class. The modular educational AFM is low-cost (<4,000$) and easy to operate. The cost reduction is enabled by new subsystem development of a buzzer-actuated scanner and demodulation electronics designed to interface with a myRIO data acquisition system. Moreover, the use of an active cantilever probe with piezoresistive sensing and thermomechanical actuation significantly reduced experiment setup overhead with improved operational safety. In the end, the developed AFM capabilities are demonstrated with imaging results. The paper also showcases the course design centered around selected subsystems. The new AFM design allows scientific-method-based learning, maximizes utilization of existing resources, and offers potential subsystem upgrades for high-end research applications. The presented instrument and course can help connect members of both the AFM and the mechatronics communities to further develop advanced techniques for new applications.
2020
Fangzhou Xia*; Chen Yang; Yi Wang; Kamal Youcef-Toumi
Model and Controller Design for High-speed Atomic Force Microscope Imaging and Autotuning Proceedings Article
In: ASPE Spring Topical Meeting on Design and Control of Precision Mechatronic Systems, American Society for Precision Engineering 2020.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Automation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Theory
@inproceedings{2020ASPE,
title = {Model and Controller Design for High-speed Atomic Force Microscope Imaging and Autotuning},
author = {Fangzhou Xia* and Chen Yang and Yi Wang and Kamal Youcef-Toumi},
url = {https://zenodo.org/record/5048303#.Y5icmnbMJD8},
year = {2020},
date = {2020-01-01},
urldate = {2020-01-01},
booktitle = {ASPE Spring Topical Meeting on Design and Control of Precision Mechatronic Systems},
organization = {American Society for Precision Engineering},
abstract = {Atomic Force Microscope (AFM) is a powerful nano-scale surface measurement instrument. However, significant operator experience is needed for successful imaging under various conditions. Parameters of the PID controller for probe deflection or oscillation regulation are tuned by the operator based on visual inspection of the trace and retrace tracking performance. With the development of high-speed AFM and for the purpose of operation overhead reduction, automated parameter tuning of the controller is needed. In this work, we propose a series of control and image improvement methods starting first with an automated PID controller tuning and adjustment method. The imaging speed can also be adjusted based on an error metric. Second, three methods including location-based scanning, line-based feedforward and error-corrected line scan, are proposed for image-level performance improvement. Third, in cases where topography variation and material properties are non-uniform across the sample surface, the controller needs to adapt to such changes on the fly to maintain stability and good tracking performance. Considering the complexity in contact mechanics and the requirement of high-bandwidth real-time operation, a single neuron PID is designed for model-free adaptive tracking. With a lumped parameter AFM model created in Matlab Simulink, the proposed algorithms are evaluated in simulation to demonstrate their effectiveness. With the proposed architecture, the methods can be used individually or together based on application to improve imaging performance.},
keywords = {Atomic Force Microscopy, Automation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Theory},
pubstate = {published},
tppubtype = {inproceedings}
}
2019
Fangzhou Xia*; Chen Yang; Yi Wang; Kamal Youcef-Toumi
Bandwidth Based Repetitive Controller Design for a Modular Multi-actuated AFM Scanner Proceedings Article
In: IEEE American Control Conference (ACC), pp. 3776-3781, 2019, ISSN: 0743-1619.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Piezoelectricity, Theory
@inproceedings{2019ACC_1,
title = {Bandwidth Based Repetitive Controller Design for a Modular Multi-actuated AFM Scanner},
author = {Fangzhou Xia* and Chen Yang and Yi Wang and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8814642},
doi = {10.23919/ACC.2019.8814642},
issn = {0743-1619},
year = {2019},
date = {2019-07-01},
urldate = {2019-07-01},
booktitle = {IEEE American Control Conference (ACC)},
pages = {3776-3781},
abstract = {High-Speed Atomic Force Micrscopy (HSAFM) enables visualization of dynamic processes and helps with understanding of fundamental behaviors at the nano-scale. Ideally, the HSAFM video frames should have high fidelity, high resolution, and a wide scanning range. Unfortunately, it is very difficult for scanners to simultaneously achieve high scanning bandwidth and large range. Since the first bending mode of large piezos is a major limiting factor, we propose an alternative design by stacking multiple short range piezo actuators. This approach allows significant increase of scanner bandwidth (over 20 kHz) while maintaining large travel range (over 20 μm). The modular design also facilitates the easy adjustment of scanner travel range. In this paper, we first discuss the design and assembly of this scanner. We then present the modeling and control of this multi-actuated scanner. A comparative study is then given on the performance of different controllers. These include a PID controller, a LQR based controller and a bandwidth based repetitive controller. The proposed algorithm provides significant improvement in tracking performance when utilized with the scanner using optimized input trajectories.},
keywords = {Atomic Force Microscopy, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Piezoelectricity, Theory},
pubstate = {published},
tppubtype = {inproceedings}
}
Fangzhou Xia*; Chen Yang; Yi Wang; Kamal Youcef-Toumi; Christoph Reuter; Tzvetan Ivanov; Mathias Holz; Ivo W Rangelow
Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes Journal Article
In: Nanomaterials, vol. 9, no. 7, pp. 1013, 2019.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Experimentation, Instrumentation, Material Science, Mechatronics, MEMS, Nanorobotics, Sensor
@article{2019NM,
title = {Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes},
author = {Fangzhou Xia* and Chen Yang and Yi Wang and Kamal Youcef-Toumi and Christoph Reuter and Tzvetan Ivanov and Mathias Holz and Ivo W Rangelow},
url = {https://www.mdpi.com/2079-4991/9/7/1013},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Nanomaterials},
volume = {9},
number = {7},
pages = {1013},
publisher = {Multidisciplinary Digital Publishing Institute},
abstract = {Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the deflection of the cantilever probe. This optical method for deflection sensing limits the capability of AFM to obtaining images in transparent environments only. In addition, tapping mode imaging in liquid environments with transparent sample chamber can be difficult for laser-probe alignment due to multiple different refraction indices of materials. Spurious structure resonance can be excited from piezo actuator excitation. Photothermal actuation resolves the resonance confusion but makes optical setup more complicated. In this paper, we present the design and fabrication method of coated active scanning probes with piezoresistive deflection sensing, thermomechanical actuation and thin photoresist polymer surface coating. The newly developed probes are capable of conducting topography imaging in opaque liquids without the need of an optical system. The selected coating can withstand harsh chemical environments with high acidity (e.g., 35% sulfuric acid). The probes are operated in various opaque liquid environments with a custom designed AFM system to demonstrate the imaging performance. The development of coated active probes opens up possibilities for observing samples in their native environments.},
keywords = {Atomic Force Microscopy, Experimentation, Instrumentation, Material Science, Mechatronics, MEMS, Nanorobotics, Sensor},
pubstate = {published},
tppubtype = {article}
}
Chen Yang*; Fangzhou Xia; Yi Wang; Stephen Truncale; Kamal Youcef-Toumi
Design and Control of a Multi-Actuated Nanopositioning Stage with Stacked Structure Proceedings Article
In: IEEE American Control Conference (ACC), pp. 3782-3788, 2019.
Abstract | Links | BibTeX | Tags: Actuator, Atomic Force Microscopy, Design, Experimentation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control
@inproceedings{2019ACC_2,
title = {Design and Control of a Multi-Actuated Nanopositioning Stage with Stacked Structure},
author = {Chen Yang* and Fangzhou Xia and Yi Wang and Stephen Truncale and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8815299},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
booktitle = {IEEE American Control Conference (ACC)},
pages = {3782-3788},
abstract = {A novel multi-actuated nanopositioning stage with stacked structure has been developed. The aim is to achieve both high bandwidth and large motion range. Symmetric flexures are designed to obtain equal stiffness along any direction in the lateral plane. With this design, the lateral stiffness and corresponding bending mode resonance frequency can be optimized. Both analytical model and finite element analysis are employed to predict the dominant resonance frequency. Experimental results indicate that the dominant resonance of nanopositioner is at 28.2 kHz, with a motion range of 16.5J.1m. A disturbance-observer-based controller is implemented to suppress the hysteretic nonlinearity. The new design and control system enable high-bandwidth and high-precision nanopositioning up to 2 kHz.},
keywords = {Actuator, Atomic Force Microscopy, Design, Experimentation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control},
pubstate = {published},
tppubtype = {inproceedings}
}
2018
Fangzhou Xia*; Stephen Truncale; Yi Wang; Kamal Youcef-Toumi
Design and Control of a Multi-actuated High-bandwidth and Large-range Scanner for Atomic Force Microscopy Proceedings Article
In: IEEE American Control Conference (ACC), pp. 4330-4335, 2018, ISSN: 2378-5861.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Experimentation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Piezoelectricity
@inproceedings{2018ACC,
title = {Design and Control of a Multi-actuated High-bandwidth and Large-range Scanner for Atomic Force Microscopy},
author = {Fangzhou Xia* and Stephen Truncale and Yi Wang and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8431801},
doi = {10.23919/ACC.2018.8431801},
issn = {2378-5861},
year = {2018},
date = {2018-06-01},
urldate = {2018-06-01},
booktitle = {IEEE American Control Conference (ACC)},
pages = {4330-4335},
abstract = {Atomic force microscopes (AFMs) with high-speed and large-range capabilities open up possibilities for many new applications. It is desirable to have a large scanning range along with zooming ability to obtain high resolution and high frame-rate imaging. Such capabilities will increase the imaging throughput and allow more sophisticated observations at the nanoscale. Unfortunately, in-plane scanning of conventional piezo tube scanners typically covers a large range of hundreds of microns but has limited bandwidth up to several hundred Hertz. The main focus of this paper is the multi-actuated piezo scanner design and control algorithm to achieve high-speed tracking. Three design strategies for structure bandwidth and operational range consideration are presented and evaluated. The non-linear hysteresis effect of the piezo actuators is modeled using the Preisach hysteresis model. PID control, iterative learning control and repetitive control strategies were investigated in simulation. Based on the controllers performance, the repetitive controller is implemented on a high-speed FPGA device and experimentally verified. The new AFM scanner design is capable of 10 kHz tracking at 3 μm range and 200 Hz tracking at 100 μm range.},
keywords = {Atomic Force Microscopy, Experimentation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Piezoelectricity},
pubstate = {published},
tppubtype = {inproceedings}
}
Chen Yang*; Changle Li; Fangzhou Xia; Yanhe Zhu; Jie Zhao; Kamal Youcef-Toumi
Charge controller with decoupled and self-compensating configurations for linear operation of piezoelectric actuators in a wide bandwidth Journal Article
In: IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5392-5402, 2018.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Experimentation, Instrumentation, Mechatronics, Motion Control, Piezoelectricity, Theory
@article{2018IEEETIE,
title = {Charge controller with decoupled and self-compensating configurations for linear operation of piezoelectric actuators in a wide bandwidth},
author = {Chen Yang* and Changle Li and Fangzhou Xia and Yanhe Zhu and Jie Zhao and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8466119},
year = {2018},
date = {2018-01-01},
urldate = {2018-01-01},
journal = {IEEE Transactions on Industrial Electronics},
volume = {66},
number = {7},
pages = {5392-5402},
publisher = {IEEE},
abstract = {Charge control is a well-known sensorless approach to operate piezoelectric actuators, which has been proposed for more than 30 years. However, it is rarely used in industry because the implemented controllers suffer from the issues of limited low-frequency performance, long settling time, floating-load, and loss of stroke, etc. In this paper, a novel controller circuit dedicated to overcome these issues is presented. In the proposed scheme, a grounded-load charge controller with decoupled configuration is developed, which separates high-frequency and low-frequency paths, thus achieving arbitrarily low transition frequency without increasing the settling time. Based on this, a self-compensating configuration is further proposed and integrated into the controller circuit, which makes full use of controller output to improve its own control performance at low frequencies. Experimental results show that the presented charge controller can effectively reduce more than 88% of the hysteretic nonlinearity even when operating close to the transition frequency. To demonstrate its practical value, we then integrate it into a custom-designed high-speed atomic force microscope system. By comparing images obtained from using voltage drive and charge controller, it is clear that the piezoelectric hysteresis has been significantly reduced in a wide bandwidth.},
keywords = {Atomic Force Microscopy, Experimentation, Instrumentation, Mechatronics, Motion Control, Piezoelectricity, Theory},
pubstate = {published},
tppubtype = {article}
}
2017
Fangzhou Xia*; Iman Soltani Bozchalooi; Kamal Youcef-Toumi
Induced vibration contact detection for minimizing cantilever tip-sample interaction forces in jumping mode atomic force microscopy Proceedings Article
In: IEEE American Control Conference (ACC), pp. 4141–4146, IEEE 2017.
Abstract | Links | BibTeX | Tags: Atomic Force Microscopy, Experimentation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Signal Processing
@inproceedings{2017ACC,
title = {Induced vibration contact detection for minimizing cantilever tip-sample interaction forces in jumping mode atomic force microscopy},
author = {Fangzhou Xia* and Iman Soltani Bozchalooi and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/7963591},
year = {2017},
date = {2017-01-01},
urldate = {2017-01-01},
booktitle = {IEEE American Control Conference (ACC)},
pages = {4141--4146},
organization = {IEEE},
abstract = {Minimizing tip-sample interaction force is crucial for the performance of atomic force microscopes when imaging delicate samples. Conventional methods based on jumping mode such as peak force tapping require a prescribed maximum interaction force to detect tip-sample contact. However, due to the presence of drag forces (in aqueous environments), noises and cantilever dynamics, the minimal detectable peak force can be large. This results in large tip-sample interaction forces and hence sample damage. To minimize this force, we propose a method based on induction of surface or probe vibrations to detect contact between cantilever probe tip and sample substrate. To illustrate the effectiveness of the method, we report experimental results for contact detection on a PS-LDPE-12M polymer sample. A topography tracking control algorithm based on the proposed contact detection scheme is also presented.},
keywords = {Atomic Force Microscopy, Experimentation, Instrumentation, Mechatronics, Modeling & Simulation, Motion Control, Signal Processing},
pubstate = {published},
tppubtype = {inproceedings}
}
Ivo W Rangelow*; Tzvetan Ivanov; Ahmad Ahmad; Marcus Kaestner; Claudia Lenk; Iman S Bozchalooi; Fangzhou Xia*; Kamal Youcef-Toumi; Mathias Holz; Alexander Reum
Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication Journal Article
In: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 35, no. 6, pp. 06G101, 2017.
Abstract | Links | BibTeX | Tags: Actuator, Atomic Force Microscopy, Instrumentation, MEMS, Nanorobotics, Review, Sensor
@article{2017JVST,
title = {Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication},
author = {Ivo W Rangelow* and Tzvetan Ivanov and Ahmad Ahmad and Marcus Kaestner and Claudia Lenk and Iman S Bozchalooi and Fangzhou Xia* and Kamal Youcef-Toumi and Mathias Holz and Alexander Reum},
url = {https://avs.scitation.org/doi/10.1116/1.4992073},
year = {2017},
date = {2017-01-01},
urldate = {2017-01-01},
journal = {Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena},
volume = {35},
number = {6},
pages = {06G101},
publisher = {AVS},
abstract = {With the recent advances in the field of nanotechnology, measurement and manipulation requirements at the nanoscale have become more stringent than ever before. In atomic force microscopy, high-speed performance alone is not sufficient without considerations of other aspects of the measurement task, such as the feature aspect ratio, required range, or acceptable probe-sample interaction forces. In this paper, the authors discuss these requirements and the research directions that provide the highest potential in meeting them. The authors elaborate on the efforts toward the downsizing of self-sensed and self-actuated probes as well as on upscaling by active cantilever arrays. The authors present the fabrication process of active probes along with the tip customizations carried out targeting specific application fields. As promising application in scope of nanofabrication, field emission scanning probe lithography is introduced. The authors further discuss their control and design approach. Here, microactuators, e.g., multilayer microcantilevers, and macroactuators, e.g., flexure scanners, are combined in order to simultaneously meet both the range and speed requirements of a new generation of scanning probe microscopes.},
keywords = {Actuator, Atomic Force Microscopy, Instrumentation, MEMS, Nanorobotics, Review, Sensor},
pubstate = {published},
tppubtype = {article}
}



Dr. Fangzhou Xia
Research Scientist
Mechanical Engineering Department
Physics Department
Massachusetts Institute of Technology